دورة تدقيق الدراسات الكهربائية ۳۰ / ۱۱ / ۳۰ ۲۰۰۵ / ۱۲ / ۱ الجمهورية العربية السورية نقابة المهندسين السورييين فرع نقابة محافظة حمص

حساب مقاطع كبلات التغذية Feeders Cross Section Calculation FCSC

إعداد وتقديم

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

حساب مقاطع كبلات التغذية Feeders Cross Section Calculation FCSC

				-
				-
		()	-
				-
				-
				-
				-
1	- D			-
X	40			-
1)			-
3	<u> </u>			
10				
Z V	10			

حساب مقاطع كبلات التغذية Feeders Cross Section Calculation FCSC

85°C 70°C pvc XLPE Cross - Linked Polyethylene 90°C محمد صبحي المصري ماجستير هندسة علوم كهربائية

00963 94 571281

MCB Miniature Circuit Breaker

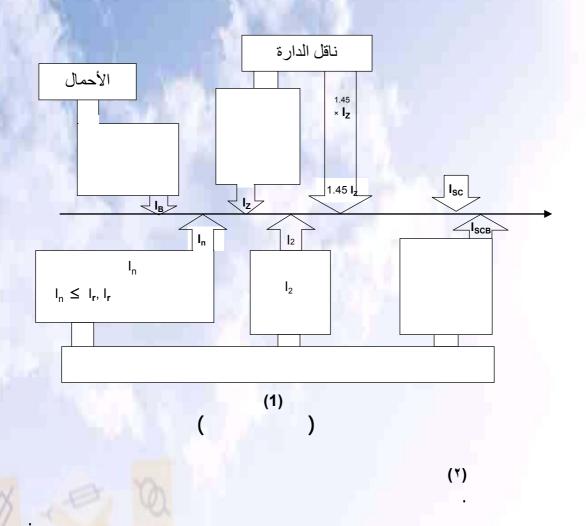
100A Trip 50 kA

 $I_B \le I_n \le I_z$ (1) $I_2 \le 1.45 I_z$ (2)

l_n l_r .ir = I_n

 $I_n I_r = (0.7-1)$ $I_r = (0.4-1) I_n$

:I_z


:I₂


 \mathbf{I}_{sc} $: I_{\mathsf{SCB}}$

(1)

∶I_B

 $: I_n$

. Solenoids

= محمد صبحي المصري --ماجستير هندسة علوم كهربائية 00963 94 571281

	. Safety	
	(۲) (۲)،	
	- WY -	
	.35° C	_
	. ٤٠° C	_
	. •,• m	-
	. 1,7km / w	_
		-
flat		-
		_
١,٥		-
. IEC287, ١٩٨٢		_
1-50	(۲۱).	(^v)

Conductor	Conduc	ctor resistan	ce		Current carrying capacity						
Cross	DC at 20°C	AC at	AC at 70°C in	In	ground			In air			
sectional area		70°C in flat formation	trefoil formation	Direct laid	Direct laid	In duct	Free	Free	In pipes		
		000	க	000	க	⊕	444	8	8		
mm²	Maximum ohmkm	Approx ohmkm	Approx amps	Approx amps	Approx amps	Approx amps	Approx amps	Approx amps	Approx amps		
1.5	12.1	14.5	14.5	25	24	18	20	18	15		
2.5	7.41	8.87	8.87	33	31	24	27	23	19		
4	4.61	5.52	5.52	42	41	31	36	31	25		
6	3.08	3.69	3.69	53	51	39	46	40	32		
10	1.83	2.19	2.19	70	68	52	62	54	43		
16	1.15	1.38	1.38	91	87	67	83	71	56		
25	0.727	0.870	0.870	116	112	87	109	94	73		
35	0.524	0.627	0.627	140	134	104	135	116	89		
50	0.387	0.463	0.464	166	158	125	164	141	107		
70	0.268	0.321	0.322	204	194	154	208	179	134		
95	0.193	0.232	0.232	245	233	186	259	222	163		
120	0.153	0.184	0.185	279	264	212	301	258	188		
150	0.124	0.150	0.151	313	296	238	345	296	213		
185	0.0991	0.1200	0.1215	354	334	270	399	343	243		
240	0.0754	0.0922	0.0941	412	385	313	476	407	285		
300	0.0601	0.0743	0.0767	466	433	353	551	469	324		
400	0.0470	0.0593	0.0623	531	488	399	642	542	369		
500	0.0366	0.0476	0.0513	603	546	449	747	624	417		
630	0.0283	0.0366	0.0431	686	609	501	875	717	470		

Current carrying capacity
Single core cables with copper conductor,
PVC 70 ° C Insulated and PVC sheathed, 0.6/1 K V
PVC

, /1 kv PVC 70° C

()

Conductor	Conductor	resistance	1	n ground		In air			
Cross	DC at	AC at 70°C	Unam	oured	Armoured	Unam	noured	Armoured	
sectional area	20°C Maximum ohmkm	Approx ohmkm	Direct laid Approx	Laid in ducts Approx	Direct laid Approx	Free H Approx	In pipes Approx	Free Approx	
200000	omnem	E CONTRACTOR	Olenean	amps	amps	amps	amps	amps	
1.5	12.1	14.5	21	18		16	14		
2.5	7.41	8.87	27	23		22	19		
4	4.61	5.52	36	30	36	29	24	29	
6	3.08	3.69	45	37	45	37	31	37	
10	1.83	2.19	60	50	60	50	41	51	
16	1.15	1.38	78	65	78	66	54	66	
25	0.727	0.870	100	83	100	87	70	88	
35	0.524	0.628	125	101	124	106	84	109	
50	0.387	0.464	149	121	147	130	102	133	
70	0.268	0.322	183	148	180	163	126	167	
95	0.193	0.232	219	178	215	201	154	204	
120	0.153	0.185	249	203	245	233	177	235	
150	0.124	0.151	280	229	273	268	202	268	
185	0.0991	0.121	315	259	306	308	230	305	
240	0.0754	0.0939	364	301	349	364	269	355	
30	0.0601	0.0764	409	339	387	417	306	401	
400	0.0470	0.0619	465	386	428	485	352	454	
500	0.0366	0.0507	520	441	468	554	406	506	

(۲)

Current carrying capacity
Three and four core cables with copper conductor,
PVC 70 ° C Insulated and PVC sheathed, 0.6/1 K V
pvc

۰,٦/1 kv

PVC

70° C

Conductor	Condu	ctor resistar	ice		Cu	rrent carry	ying capac	ity	
Cross	DC at 20°C	AC at	AC at	lı	ground			In air	
sectional area Maximum ohmkm		85°C in flat formation		Direct laid	Direct laid	In duct	Free	Free	In pipes
		ООО Арргох	Approx amps	ООО хотара	Approx amps	Approx amps	Approx	Approx	Approx
mm²	ohmem ohn	ohmkm	amps	amps	amps	amps	amps	amps	amps
1.5	12.1	15.2	15.2	29	28	21	25	21	18
2.5	7.41	9.3	9.3	38	37	28	33	27	23
4	4.61	5.79	5.79	49	48	36	45	37	31
6	3.08	3.87	3.87	62	59	45	57	46	38
10	1.83	2.30	2.30	82	79	61	78	63	52
16	1.15	1.44	1.44	106	102	78	103	84	68
25	0.727	0.913	0.912	136	130	101	136	110	88
35	0.524	0.658	0.658	163	156	122	167	135	107
50	0.387	0.486	0.486	193	185	145	204	165	129
70	0.268	0.337	0.337	238	227	179	259	209	161
95	0.193	0.243	0.244	286	271	217	321	259	197
120	0.153	0.193	0.194	326	309	247	374	301	226
150	0.124	0.157	0.158	365	346	278	428	345	257
185	0.0991	0.126	0.127	414	390	315	496	399	293
240	0.0754	0.0965	0.0984	481	450	366	591	474	344
300	0.0601	0.0777	0.0801	544	506	413	684	547	391
400	0.0470	0.0619	0.0649	621	572	468	798	633	447
500	0.0366	0.0496	0.0532	706	641	526	929	728	507
630	0.0283	0.0401	0.0446	805	716	588	1090	838	572

(3)

Current carrying capacity
Single core cables with copper conductors,
PVC 85 ° C Insulated and PVC sheathed, 0.6/1 K V
PVC

, /1 kv 'PVC 85° C

Conductor	Conductor	resistance	1	In ground		In air			
Cross	DC at	AC at	Unarm	oured	Armoured	Unarn	noured	Armoured	
sectional area mm²	20°C Maximum	70°C Approx	Direct laid Approx	Laid in ducts Approx amps	Direct laid Approx	Approx	In pipes Approx amps	Free Approx	
	Olliterati	Omitran	OHIERM	umps	umps	amps	amps	amps	
1.5	12.1	15.2	24	20		20	17	Ş -	
2.5	7.41	9.3	32	27	27	27	22	1.	
4	4.61	5.79	42	35	42	36	29	36	
6	3.08	3.87	52	44	52	45	37	45	
10	1.83	2.30	70	58	70	61	50	62	
16	1.15	1.44	91	75	90	82	65	82	
25	0.727	0.913	117	97	121	107	84	114	
35	0.524	0.658	146	118	145	131	101	135	
50	0.387	0.486	174	141	172	161	122	165	
70	0.268	0.337	213	173	210	202	152	206	
95	0.193	0.244	255	208	252	249	185	252	
120	0.153	0.194	291	237	286	289	213	291	
150	0.124	0.158	327	268	319	332	243	331	
185	0.0991	0.127	368	303	358	381	277	377	
240	0.0754	0.0982	426	352	409	451	325	439	
30	0.0601	0.0798	479	397	455	517	370	497	
400	0.0470	0.0644	544	452	504	601	426	565	
500	0.0366	0.0526	610	517	553	687	492	630	

(4)

Current carrying capacity
Three and four core cables with copper conductors,
PVC 85 ° C Insulated and PVC sheathed, 0.6/1 K V
PVC

85° C

, /1 kv ^{PVC}

Conductor	Condu	ctor resista	nce	Current carrying capacity						
Cross	DC at 20°C	AC at	AC at	h	n ground			In air		
	Maximum ohmkm	90°C in flat formation OOO Approx ohmkm	90°C in trefoil formation Approx amps	Direct laid OOO Approx amps	Direct laid Approx amps	In duct Approx amps	Free O Approx amps	Approx amps	Approx	
1.5	12.1	15.4	15.4	31	30	22	27	22	19	
2.5	7.41	9.45	9.45	40	39	29	36	29	24	
4	4.61	5.88	5.88	52	50	38	47	38	32	
6	3.08	3,93	3.93	65	63	47	60	49	40	
10	1.83	2.33	2.33	87	83	63	82	66	54	
16	1.15	1.47	1.47	112	107	82	109	88	70	
25	0.727	0.927	0.927	144	137	105	145	116	92	
35	0.524	0.668	0.669	172	165	127	178	143	112	
50	0.387	0.494	0.494	204	195	151	218	175	134	
70	0.268	0.342	0.343	251	238	187	277	222	168	
95	0.193	0.247	0.248	301	286	225	344	274	205	
120	0.153	0.196	0.197	345	327	258	409	326	237	
150	0.124	0.159	0.160	385	363	290	461	367	269	
185	0.0991	0.128	0.129	436	410	330	534	425	308	
240	0.0754	0.098	0.100	507	474	382	638	505	361	
300	0.0601	0.079	0.0815	573	532	431	740	583	411	
400	0.0470	0.0629	0.0661	654	600	489	865	676	469	
500	0.0366	0.0504	0.0543	744	673	550	1009	779	533	
630	0.0283	0.0407	0.0453	847	752	615	1184	900	603	

(5)

Current carrying capacity
Single core cables with copper conductors,
of XLPE Insulated and PVC sheathed, 0.6/1 K V
XLPE

Conductor	Conductor	resistance		In ground			In air	
Cross	DC at	AC at	Unarm	oured	Armoured	Unarm	noured	Armoured
sectional area	20°C	90°C	Direct laid	Laid in ducts	Direct laid	Free	In pipes	Free
mm²	Maximum ohm/km	Approx ohm/km	Approx ohm/km	Approx amps	Approx amps	Approx amps	Approx amps	Approx amps
1.5	12.1	15.4	27	22	sto	22	18	400
2.5	7.41	9.45	35	29	-	29	24	-
4	4.61	5.43 5.88	45	37	46	38	31	39
6	3.08	3.93	56	46	57	48	39	50
10	1.83	2.33	76	62	76	67	52	67
16	1.15	1.47	98	80	98	88	68	89
25	0.727	0.927	128	104	128	118	90	120
35	0.524	0.669	157	125	158	142	107	149
50	0.387	0.494	187	149	188	175	129	182
70	0.268	0.343	229	183	229	220	161	229
95	0.193	0.248	276	220	274	272	196	280
120	0.153	0.197	313	251	310	316	226	322
150	0.124	0.160	350	283	346	363	258	368
185	0.0991	0.129	395	321	387	418	295	420
240	0.0754	0.0998	458	372	444	496	346	491
30	0.0601	0.0812	516	420	494	571	394	557
400	0.0470	0.0656	584	478	549	665	454	635
500	0.0366	0.0536	655	538	597	760	515	705

(6)

Current carrying capacity
Three and four core cables with copper conductors,
XLPE Insulated and PVC sheathed, 0.6/1 K V
XLPE

, /1 kv PVC

العازل	حرارة التربة (C) Ground temperature									
Insulation	25	30	35	40	45	50	55			
XLPE Insulated cables	1.09	1.04	1	0.95	0.90	0.85	0.80			
PVC (rated 85°C) cables	1.1	1.05	1	0.95	0.89	0.84	0.77			

(7)
Cables laid direct in ground
Rating factors for variation in ground temperature

	مقطع الكبل Size of conductor								
عمق التنفيذ Depth of laying m	Up to 50mm ²	70mm ² to 300mm ²	Above 300mm ²						
0.50	1	1	1						
0.60	0.99	0.98	0.97						
0.80	0.97	0.96	0.94						
1.00	0.95	0.93	0.92						
1.25	0.94	0.92	0.89						
1.50	0.93	0.90	0.87						
1.75	0.92	0.89	0.86						
2.00	0.91	0.88	0.85						

(8)

Cables laid direct in ground
Rating factors for variation in depth of burial
(to centre of cable in the trefoil group of cables)
0.5m

(ക

محمد صبحي المصاري ماجستير هندسة علوم كهربانية 00963 94 571281

مقطع الكبل Size of conductor	مقاومة التربة الحرارية Soil thermal resistivity in k.m/W								
mm²	0.8	0.9	1.0	1.5	2.0	2.5			
Single core cables									
up to 150	1.16	1.12	1.07	0.91	0.81	0.73			
from 185-300	1.17	1.12	1.07	0.91	0.80	0.73			
from 400-630	1.17	1.12	1.07	0.91	0.80	0.73			
Multicore cables									
up to 16	1.12	1.08	1.05	0.93	0.84	0.77			
from 25-150	1.14	1.10	1.06	0.92	0.82	0.75			
from 185-500	1.15	1.10	1.07	0.92	0.81	0.74			

(9)

Cables laid direct in ground Rating factors for variation in thermal resitivity of soil (average values)

المادة العازلة	حوارة الهواء (°C) Air temperature										
Insulation	25	30	35	40	45	50	55				
XLPE	1.14	1.10	1.05	1	0.95	0.89	0.84				
PVC (rated 85°C)	1.15	1.11	1.05	1	0.94	0.88	0.82				

الجدول رقم (10) Cables installed in air, <u>Rating</u> factors for variation in air temperature جدول التصحيح عند اختلاف درجة حوارة الهواء

عدد الكيلات	متلامسة	S	تباعدة pacing	4
Number of cables in group	Touching	0.15m	0.3m	0.45m
2	0.81	0.87	0.91	0.93
3	0.70	0.78	0.84	0.88
4	0.63	0.74	0.81	0.86
5	0.59	0.70	0.78	0.84
6	0.55	0.68	0.77	0.83

(11)

Cables installed in air

محمد صبحي المصرى المصلاح المصرى الجستير هندسة علوم فهريانية Flat 00963 94 571281

عدد الدارات	متلامسة Touching		Sp	تباعدة Spacing		
Number of circuits	Trefoil	Laid flat	0.15m	0.3m	0.45m	
2	0.78	0.81	0.83	0.88	0.91	
3	0.66	0.70	0.73	0.79	0.84	
4	0.61	0.64	0.68	0.73	0.81	
5	0.56	0.60	0.64	0.73	0.79	
6	0.53	0.57	0.61	0.71	0.78	

الجدول رقم (12)

Cables installed in air Group rating factors for circuits of three single core cables, In trefoil or laid touching in flat horizontal formation

جدول التصحيح عند تنفيذ كبلات أحادية النواة متجاورة

مقطع الناقل Size of conductor		Soil th		المقاومة النو sistivity ii		
mm ²	8.0	0.9	1.0	1.5	2.0	2.5
Single core cables						
up to 150	1.10	1.07	1.04	0.94	0.86	0.80
from 185-300	1.11	1.08	1.05	0.93	0.85	0.79
from 400-630	1.12	1.08	1.05	0.93	0.84	0.78
Multicore cables						
up to 16	1.04	1.03	1.02	0.97	0.92	0.88
from 25-150	1.06	1.04	1.03	0.95	0.90	0.85
from 185-500	1.07	1.05	1.03	0.95	0.88	0.83

الجدول رقم (13)

Cables installed in duct in ground Rating factors for variation in thermal resistivity of soil (average valuses)

جدول التصحيح عند اختلاف المقاومة النوعية للتربة واستخدام أنابيب في التربة

عمق التنفيذ Depth of laying (m)	أحادي النواة Single core	متعدد النواة Multi core	
0.50	1.00	1.00	
0.60	0.98	0.99	
0.80	0.95	0.98	
1.00	0.93	0.96	
1.25	0.91	0.95	
1.50	0.89	0.94	
1.75	0.88	0.94	
2.00	0.87	0.93	
2.50	0.86	0.92	
3 or more	0.85	0.81	

الجدول رقم (14) Cables installed in ducts Rating factors for depth of laying

جدول التصحيح عند اختلاف عنق الأنابيب في التربة

عدد الدارت	متلامسة	Spacing	متباعدة
Number of circuits	Touching	0.45m	&
2	0.87	0.91	0.93
3	0.78	0.84	0.87
4	0.74	0.81	0.85
5	0.70	0.79	0.83
6	0.69	0.78	0.82

الجدول رقم (15)

Cables installed in ducts Group rating factors for single core cables in trefoil single way duct, horizontal formation

> جدول التصحيح لكبلات أحادية النواة منفذة في أنابيب أفقية

عدد الدارات	متلامسة	متباعدةSpacing				
Number of circuits	Touching O	O 0.30m	O 0.45m	O 0.60m		
2	0.90	0.93	0.95	0.96		
3	0.83	0.88	0.91	0.93		
4	0.79	0.85	0.89	0.92		
5	0.75	0.83	0.88	0.91		
6	0.73	0.82	0.87	0.90		

الجدول رقم (16)

Cables installed in ducts
Group rating factors for multicore cables
in single way duct, horizontal formation

جدول تصحيح لكبلات متعددة النواة في أنابيب أحادية أفقية

وهذه جداول من شركة أخرى لاختيار مقطع الكبل وتيار جهاز الحماية بدلالة تيار الحمل ضمن فرضيات مختلفة جداول عوامل التصحيح الخاصة بها كما هو مبين فيما يلي:

القطع		A ة	الزمر			Ва	الزمرة			C ō,	الزم	
الاسمي	دية	سفدة بالهواء كبل متعدد النواة مثل : كبلات معزولة كبل أو كبلات أحادية				XI منفذة	گبلات XLPE منفذ					
mm²		منفذة ضمن أنبوب			ساص	للحة بالرم	۳۰۰٬۵۸۰	بال :	ن عسافة	اعن بعم	ولة بعضه	ومفصو
					ā	(ك مسلح	بسطة، أسا	۵	الأقل	كبل على	ي قطر ال	تساو
	بل	SJi	لجماية	جهازا	ئبل ئبل	SJi	لجماية	جهازا	ئبل	SJi	جهاز الحماية	
	Cu A	AI A	Cu A	AI A	Cu A	AI A	Cu A	AI A	Cu A	AI A	Cu A	AI A
0.75	-	_	28	-	12	96 <u>2</u> 9	6	23	15	28	10	224
1.0	11	-	6		15	7627	10	28	19	28	10	-
1.5	15	-	10	_	18	1020	10	20	24	_28	20	220
2.5 4 6	20 25 33	15 20 26	16 20 25	10 16 20	26 34 44	20 27 35	20 25 35	16 20 25	32 42 54	26 33 42	25 35 50	20 25 35
10 16 25	45 61 83	36 48 65	35 50 63	25 35 50	61 82 108	48 27 35	50 63 80	35 50 63	73 98 129	57 77 103	63 80 100	50 63 80
35 50 70	103 132 165	81 103 -	80 100 125	63 80 -	135 168 207	105 132 163	100 125 160	80 100 125	158 198 245	124 155 193	125 160 200	100 125 160
95 120 150	197 235 -	3 3 3	160 200 -	1 1 1	250 292 335	197 230 263	200 250 250	160 200 200	292 344 391	230 268 310	250 315 315	200 200 250
185 240 300	1 1 1	1 1 1	i i i	1 1 1	382 453 504	301 357 409	315 400 400	250 315 315	448 528 608	353 414 479	400 400 500	315 315 400
400 500		10.10	-		n n	0.50	-	1	726 830	569 649	630 630	500 500

()

DIN

° C

	طريقة تثبيت الكبلات	عدد الدارات (الكيلات)											
		12	2	3	4	5	6	7	8	9	12	15	20
1	طاهرة أو محمة في الحدار	1.00	0.80	0.70	0.65	0.6	0.57	0.54	0.52	0.50	0.45	0.41	0.38
2	طبقة واحدة سنة على الحدار أو على الأرض أو على حاملة كبلات	1.00	0.85	0.75	0.75	0.73	0.72	0.72	0.71	5 7 5	\$.	-	
3	طقة واحدة شنة على السقف	0.95	0.1	0.72	0.68	0.88	0.84	0.83	0.62	784	-	e .	. 2
4	طبقة واحدة شنة على حوامل كبلات أفضة أو شافولية	1.00	0.88	0.82	0.77	0.75	0.73	0.73	0.72	5523	94	-2	2
5	طبقة واحدة شنة على سلالم كبلات أو حوامل معدية brackets	1.00	0.87	0.82	0.80	0.8	0.79	0.79	0.78	848	194		8

حدول (18) عامل التصحيح عدد تجميع grouping عدة دارات بعضها مع بعض أو عدة كبلات متعددة النواة

	3	<u></u>	22		
عدد الطبقات	2	3	4-5	6-8	- 61

0.73

0.8

عامل التصحيح

	ل (19)	جدو	
ا طقات	6 . 11 > MC . 3	i.ī 1:c -	 late

0.7

0.68

درجة الحرارة المحيطية	رل	العاز
°C	PVC	XLPE
10	1.2	1.15
15	1.15	1.1
20	1.1	1.1
25	1.05	1.05
30	1	1
35	0.95	0.95
40	0.85	0.9
45	0.8	0.85
50	0.7	0.8
55	0.6	0.75
60	0.5	0.7
65	162	0.65
70	76 <u>2</u> 7	0.6
75	162	0.5
80	0.5%	0.4

جدول (20)

عامل التصحيح للتمديدات المنفذة بالهواء

عندما تختلف درجة الحرارة المحيطية عن C °30°

() -

PE (Protective Earth)

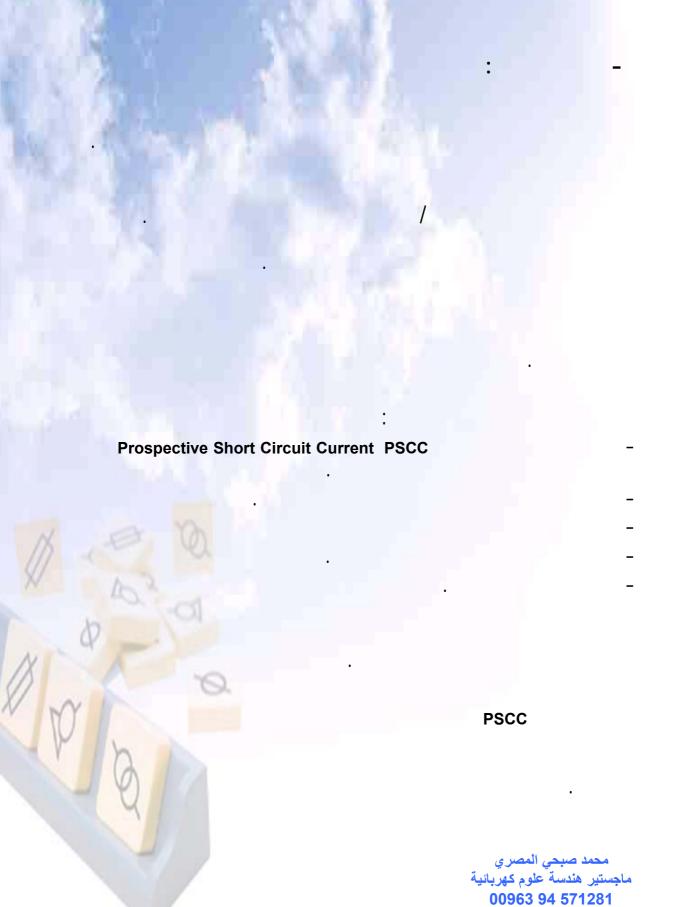
PEN (Protective Earth & Neutral)

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

9 وما فوق

0.66

			قل الحماية mm²	
ناقل الطور mm²	مقطع ناقل الحماية PEN	کائیکیاً m	محمي مي m²	غير محمي ميكانيكياً mm²
	mm ²	Cu	AI	Cu 4
1.5	1.5	2.5	4	
2.5	2.5	2.5	4	4
4	4	4	4	4
6	6	6	6	6
10	10	10	10	10
16	16	16	16	16
25	16	16	16	16
35	16	16	16	16
50	25	25	25	25
70	35	35	35	35
95	50	50	50	50
120	70	50	50	50
150	70	50	50	50
185	95	50	50	50
240	120	50	50	50
300	150	50	50	50
400	185	50	50	50


VDE 100 Part 100 ()

potential equalization bonding
 0.5 x : 2.5 mm²) -

:(4 mm ²

1 x :

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

PSCC

CAMPAGE OF LOT

upstream R_t

 $R_t = R_1 + R_2 + R_3 +[m\Omega]$

upstream χ_t -

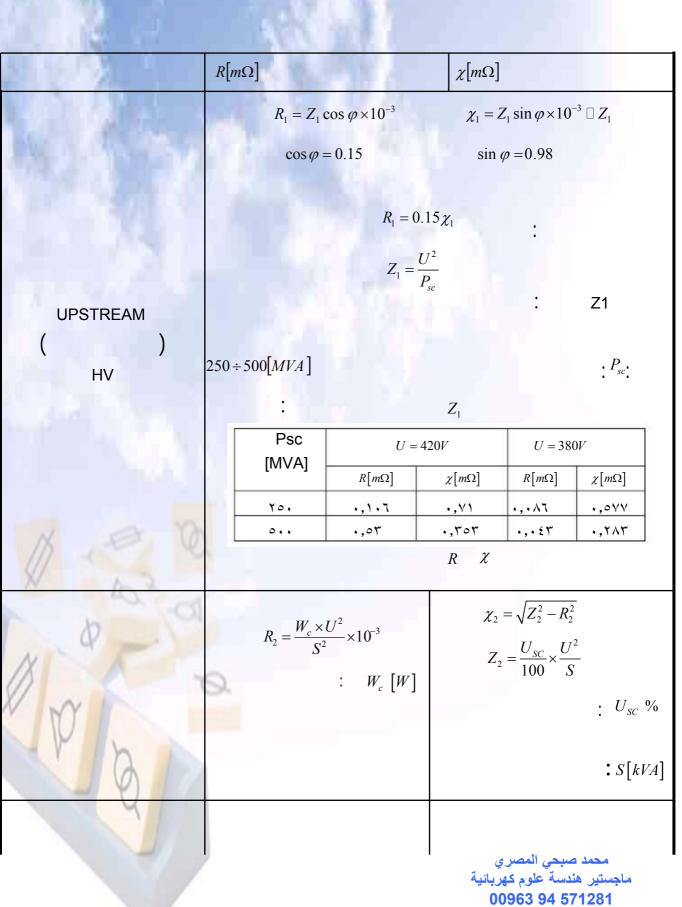
 $\chi_t = \chi_1 + \chi_2 + \chi_3 + \dots [m\Omega]$

 $I_{SC} = \frac{U}{\sqrt{3} Z_t} \qquad \vdots$

 $I_{SC} = \frac{S}{\sqrt{3} \ U_{sc} U} \times 100 \ [KA]$

phase to phase : U[V]

 $Z_{t} = \sqrt{R_{t}^{2} + \chi_{t}^{2}} \left[m\Omega \right]$


S [kVA]

1-4

: U_{sc}

(۲7)

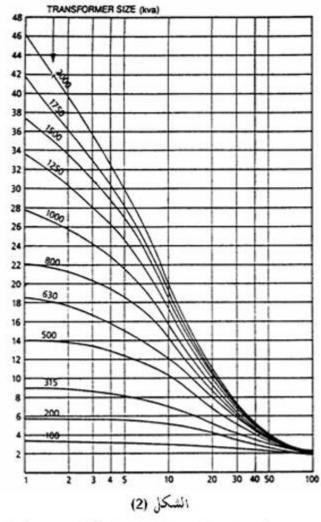
محمد صبحي المصري ماجستير هندسة علوم كهربانية 00963 94 571281

	$R[m\Omega]$	$\chi[m\Omega]$
$R_{3} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}}$ $\chi_{3} = \frac{\chi_{1} \times \chi_{2}}{\chi_{1} + \chi_{2}}$	$R_{3} = \rho \frac{L}{s}$ $\rho = \frac{1}{45} \left[\Omega.mm^{2} / m \right]$ $= 22.3 \left[m\Omega.mm^{2} / m \right]$ $\rho = \frac{1}{27} \left[\Omega.mm^{2} / m \right]$ $= 37 \left[m\Omega.mm^{2} / m \right]$ 70 °C :s [mm2]	: $\chi_3 = 0.15L$: $\chi_3 = 0.2L$: $L[m]$: $\chi_3 = 0.2L$: $\chi_3 = 0$
N P P P	$R_4 = \rho \frac{L}{s}$ $s = 50 \times 5mm^2$ 80×5 100×5 $s : [mm^2]$	L= 1m
	$R_{\scriptscriptstyle 5}\cong 0$	$X_5 = 0.15 [m\Omega / pole]$

(77)

(٢)

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281


المقطع الاسمى	القطر/عدد				G	قدرة بالمتر	، المبينة (ه	عند الأطوال	الأحادية	للكيلات	المقاومة ل			
mm²	أسلاك الثاقل	5	10	25	50	75	100	150	200	300	400	500	750	1000
1	1/1.13	086	177	442	885									\neg
1.5	1/1.38	060	119	297	595	892	1.19				ىن 0.25 kA	العطل أقل م	قيمة تيار ا	Tetin,
2.5	1/1.78	036	071	159	357	515	714	1.071			فيما يتعلق بالقيم غير المذكورة في الجدول			
4	7/0.85	023	145	113	226	339	452	678	904			3		-
6	7/1.04	015	030	076	151	227	302	453	604	906	1.208			
10	7/1.35	009	018	045	090	135	180	270	360	540	720	900		
16	7/1.70	006	011	028	057	085	113	170	226	339	452	565	847	1.13
25	7/2.14	004	007	018	036	053	071	106	142	212	285	356	534	712
35	19/1.53	003	005	014	026	032	051	078	103	154	206	267	390	514
50	19/1.78	002	004	009	019	029	038	057	076	114	152	190	294	379
70	19/2.14	001	003	008	013	021	026	039	052	079	105	131	206	262
95	19/.2.5		002	005	009	012	019	028	038	059	076	094	122	189
120	37/2.03		002	004	008	011	015	030	030	045	060	075	113	150
150	37/2.25		001	003	006	009	012	024	024	037	049	061	091	122
185	37/2.52			002	005	007	010	019	019	029	039	049	073	097
240	61/2.25			002	004	006	007	015	015	022	030	037	056	074
300	61/2.52			001	003	004	006	009	012	018	024	030	044	059
400	61/2.82			001	002	003	005	007	009	014	018	023	034	046
500	61/3.20				002	003	004	006	008	011	015	019	028	038
630	127/2.52				001	002	003	004	006	009	011	014	022	028
800	127/2.85				001	002	002	003	004	007	009	011	017	022
1000	127/3.20					001	002	003	004	005	007	009	013	018

الجدول (23) مقاومة الكبلات النحاسية لمقاطع مختلفة

حجم المحولة [kVA]

تيار المنظل المتوقع

منحنيات تحديد تيار القصر بدلالة مقاومة الكبل وحجم المحولة

Software

GROUPE SCHNEIDER

Ecodial

ABB

DOCWIN

2-4

 $t = (ks/I)^2$ [sec] (3) : *t*[sec] $: s[mm^2]$ I[kA](۲٤)

. °sec

۱۰ mm2

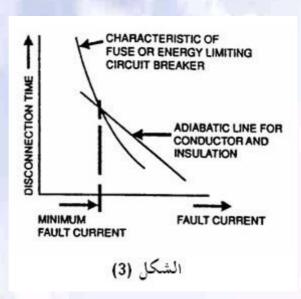
مادة الناقل	مادة العازل	درجة الحرارة البدائية المفتوضة °C	حدود درجة الحرارة النهائية °C	k
فعاس	PVC	70	160	115
	rubber	60	200	141
	XLPE	90	250	143
	PVC	70	160	76
ألمنيوم	rubber	60	200	93
	XLPE	90	250	94

الجدول (24)

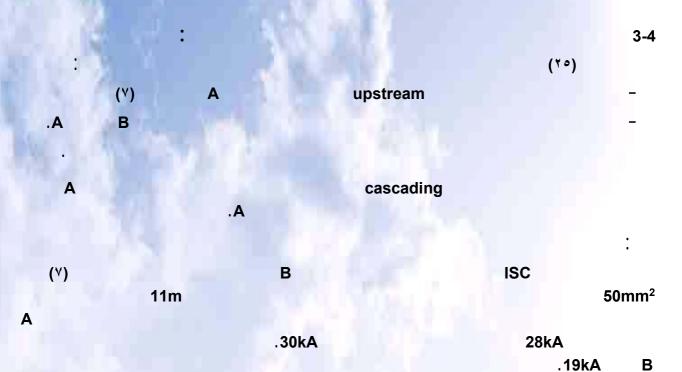
قيمة الثابت kلواد شائعة الاستخدام بغية حساب تيار القصر لكبل متعدد النواة

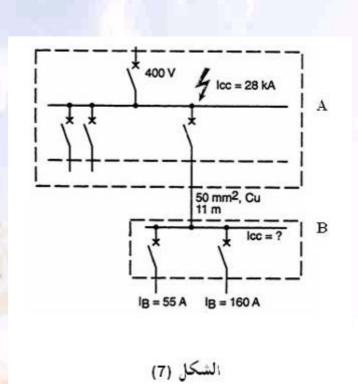
) I²t

PSCC


/MCB

(٣)


MCB


ماجستير هندسة علوم كهربائية 00963 94 571281

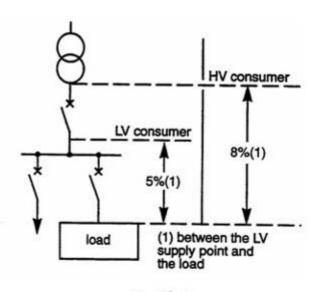
Overheating

حساب تيار القصر عند نقطة تقع تحت

نقطة العطل باستخدام الجدول (25)

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

Isc at the receiving end of a feeder in terms of the Isc at its sending end


230 V / 100 V	c.s.a. of phase conductors (in mm²)	length of circuit (in metres)
	1.5	0.8 1 1.3 1.6 3
	2.5	1 1.3 1.6 2.1 2.6 5
_	6	0.8 1.7 2.1 2.5 3.5 4 8.5
_	10	1,3 2,5 3 4 5 6,5 13 0,8 1,1 2,1 4 5,5 6,5 8,5 11 21
	16	0.8 1.1 2.1 4 5.5 6.5 8.5 11 21 0.9 1 1.4 1.7 3.5 7 8.5 10 14 17 34
	25	1 1.3 1.6 2.1 2.6 5 10 13 16 21 26 50
	35	1.5 1.9 2.2 3 3.5 7.5 15 19 22 30 37 75
	50	1.1 2.1 2.7 3 4 5.5 11 21 27 32 40 55 110
	70	1.5 3 3.5 4.5 6 7.5 15 30 37 44 60 75 150
_	95	0.9 1 2 4 5 6 8 10 20 40 50 60 80 100 200
	120	0.9 1 1.1 1.3 2.5 5 6.5 7.5 10 13 25 50 65 75 100 130 250
	185	0.8 1 1.1 1.2 1.4 2.7 5.5 7 8 11 14 27 55 70 80 110 140 270 1 1.1 1.3 1.5 1.6 3 6.5 8 9.5 13 16 32 65 80 95 130 160 320
	240	1.2 1.4 1.6 1.8 2 4 8 10 12 16 20 40 80 100 120 160 200 400
	300	1.5 1.7 1.9 2.2 2.4 5 9.5 12 15 19 24 49 95 120 150 190 240
	2 x 120	1.5 1.8 2 2.3 2.5 5.1 10 13 15 20 25 50 100 130 150 200 250
	2 x 150	1.7 1.9 2.2 2.5 2.8 5.5 11 14 17 22 28 55 110 140 170 220 280
	2 x 185	2 2.3 2.6 2.9 3.5 6.5 13 16 20 26 33 65 130 160 200 260 330
	3 x 120	2.3 2.7 3 3.5 4 7.5 15 19 23 30 38 75 150 190 230 300 380
	3 x 150 3 x 185	2.5 2.9 3.5 4 8 16 21 25 33 41 80 160 210 250 330 410 2.9 3.5 4 4.5 5 9.5 20 24 29 39 49 95 190 240 290 390
MARKETON OF	Isc upstream	2.9 3.5 4 4.5 5 9.5 20 24 29 39 49 95 190 240 290 390 Isc downstream
CALL 1	(in kA)	(in Ka)
	100	94 94 93 92 91 83 71 67 63 56 50 33 20 17 14 11 9 5
	90	85 85 84 83 83 76 66 62 58 52 47 32 20 16 14 11 9 4.5
	80	76 76 75 75 74 69 61 57 54 49 44 31 19 16 14 11 9 4,5
	70	67 67 66 66 65 61 55 52 49 45 41 29 18 16 14 11 5 4.5
_	60	58 58 57 57 57 54 48 46 44 41 38 27 18 15 13 10 8.5 4.5
	50	49 48 48 48 48 46 42 40 39 36 33 25 17 14 13 10 8.5 4.5 39 39 39 39 39 37 35 33 32 30 29 22 15 13 12 9.5 8 4.5
	35	39 39 39 39 37 35 33 32 30 29 22 15 13 12 9.5 8 4.5 34 34 34 34 34 33 31 30 29 27 26 21 15 13 11 9 8 4.5
	30	30 29 29 29 29 28 27 26 25 24 23 19 14 12 11 9 7.5 4.5
	25	25 25 25 24 24 24 23 22 22 21 20 17 13 11 10 8.5 7 4
	20	20 20 20 20 20 19 19 18 18 17 17 14 11 10 9 7.5 6.5 4
	15	15 15 15 15 15 15 14 14 14 13 13 12 9.5 8.5 8 7 6 4
	10	10 10 10 10 10 10 9.5 9.5 9.5 9.5 9 8.5 7 6.5 6.5 5.5 5 3.5
_	5	7 7 7 7 7 7 7 7 6.5 6.5 6.5 6 5.5 5 5 4.5 4 2.9
	4	5 5 5 5 5 5 5 5 5 5 5 5 5 4.5 4 4 4 3.5 3.5 2.5 4 4 4 4 4 4 4 4 4 4 4 3.5 3.5 3.5 3 3 2.9 2.2
	3	3 3 3 3 3 3 3 3 2.9 2.9 2.9 2.8 2.7 2.6 2.5 2.4 2.3 1.9
	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 19 19 18 18 17 17 17
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.8
130 V / 100 V	n c.s.a. of phase conductors (in mm²) 2.5	length of circuit (in metres)
	4	0.8 1 1.3 1.6 3 1 1.3 1.6 2.1 2.6 5
	6	0.8 1.6 2 2.4 3 4 8
	10	1,3 2,6 3,5 4 5,5 6,5 13
	16	0.8 1.1 2.1 4 5.5 6.5 8.5 11 21
	25	0.8 1 1.3 1.7 3.5 6.5 8.5 10 13 17 33
	35	0.9 1.2 1.4 1.8 2.3 4.5 9 12 14 18 23 46
	70	1.3 1.7 2 2.6 3.5 6.5 13 17 20 26 33 65
_	95	0.9 1.8 2.3 2.8 3.5 4.5 9 18 23 28 37 46 90 1.3 2.5 3 4 5 6.5 13 25 32 38 50 65 130
	120	1.3 2.5 3 4 5 6.5 13 25 32 38 50 65 130 0.8 1.7 3 4 4.5 6.5 8 17 32 40 47 65 80 160
	150	0.9 1.7 3.5 4.5 .5 7 8.5 17 34 43 50 70 85 170
	185	0.9 1 2 4 5 6 8 10 20 40 50 60 80 100 240
	240	0.9 1 1.1 1.3 2.5 5 6.5 7.5 10 13 25 50 65 75 100 130 250
	300	0.9 1 1.2 1.4 1.5 3 6 7.5 9 12 15 30 60 75 90 120 150 300
	2 x 120	0.9 1.1 1.3 1.4 1.6 3 6.5 8 9.5 13 16 32 65 80 95 130 160 320
_	2 x 150	1 1.2 1.4 1.5 1.7 3.5 7 9 10 14 17 35 70 85 100 140 170
	2 x 185 2 x 240	1.2 1.4 1.6 1.8 2 4.1 8 10 12 16 20 41 80 100 120 160 200
1	3 x 120	1.5 1.8 2 2.3 2.5 5 10 13 15 20 25 50 100 130 150 200 250 1.4 1.7 1.9 2.1 2.4 4.5 9.5 12 14 19 24 48 95 120 140 190 240
	3 x 150	1.5 1.8 2.1 2.3 2.6 5 10 13 15 21 26 50 100 130 150 210 260
40	3 x 185	1.8 2.1 2.4 2.7 3 6 12 15 18 24 30 60 120 150 180 240 300
	3 x 240	2.3 2.7 3 3.5 4 7.5 15 19 23 30 38 75 150 190 230 300 380
	10	

ISC at a point downstream, in terms of a known upstream fault-current value and the length and c.s.a. of the intervening conductors, in 230/400 v 3-phase system.

Note: for a 3-phase system having 230 v between phases, divide the above lengths by $\sqrt{3}$ = 1.732

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

أهمال أخوى (محوكات)	إتارة	نوع الحمل
5 %	3 %	تغذية المستهلك مباشرة بتوتر منحفض
8%	6%	محطة للمستهلك HV/LV معداة من شبكة عامة HV

الشكل (8)

1-5

1/45

70° C

محمد صبحي المصري ماجستير هندسة علوم كهربانية 00963 94 571281

حيث:

تيار الحمل الفعلي : $I_{ar{B}}[A]$

طول الناقل: L[m]

الناقل $Z\left[\Omega/m
ight]$ عانعة الناقل $Z\left[\Omega/m
ight]$

500 mm² مقاومة الناقل وتحسل في حالة مقاطع أكبر من : $R[\Omega/m]$

المفاعلة التحريضية للناقل وتحسل في حالة مقاطع أصغر من $50 \mathrm{mm}^2$ وتؤحد $0.08 \mathrm{x} 10^3$ عند عدم معرفة قيمتها بدقة.

cos φ : عامل الاستطاعة، وقيمته التقريبية للإنارة 0.95 وللمحركات 0.75 و 0.80 للأحمال المحتلطة.

توتر الحط، التوتر بين طورين : $U_{\scriptscriptstyle L}[V]$

نوتر الطور، التوتر بين طور وأحادي : $U_{ph}[V]$

المقاومة النوعية للناقل, تختلف قيمتها باحتلاف درجة الحرارة ونوعية المعدن

محمد صبحي المصري ماجستير هندسة علوم كهربانية 00963 94 571281

والجدول التالي يعطي قيماً تقريبية لها:

3	℃ درجة الحرارة	20	70	90
الما	Ωmm²/m	18.5	22.3	23.8
فعاس	$m\Omega.mm^2/m/m$	1/54	1/45	1/42
ألمنيوم	Ω mm 2 /m	1/34	1/27	

	11		220	/380			
1ph	3 ph	المتغيرات	1 ph	3 ph	1 ph	2ph*	3 ph
P/U _{ph} cos φ S/U _{ph}	$P/\sqrt{3}$ U _L cos φ S/ $\sqrt{3}$ U _L	1	5.6 P 4.5 S	1.9 P 1.52 S	9.8 P 7.87 S	5.68 P 4.54 S	3.28 P 2.62 S
2 ρcos φ.LI/a	√3 ρcos φ.LI/a	ΔV	0.028 LI/a	0.024 LI/a	0.028 LI/a		0.024 LI/a
$100\Delta V/U_{ph}$	$100~\Delta V/U_L$	ε %	0.45 ΔV	0.26 ΔV	0.78 ΔV 0.0218LI/a		0.45 ΔV 0.0111LI/a

جدول (25a)

العلاقات الفنية للحسابات الكهربائية

TECHNICAL FORMULAE FOR ELECTRIC CALCULATIONS

* I= P/ UL cos φ for 2 phases

S: The apparent power measured by [kVA]

P : The active power measured by [kW]

 ρ : The resistivity measured by [Ω.mm²/m] = 1/54 for Copper, 1/34 for Aluminum at 20° C

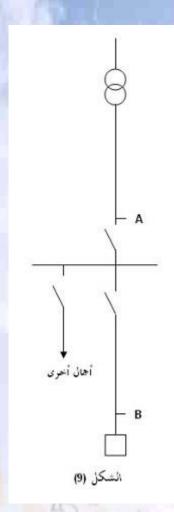
L: Length of conductor [m]

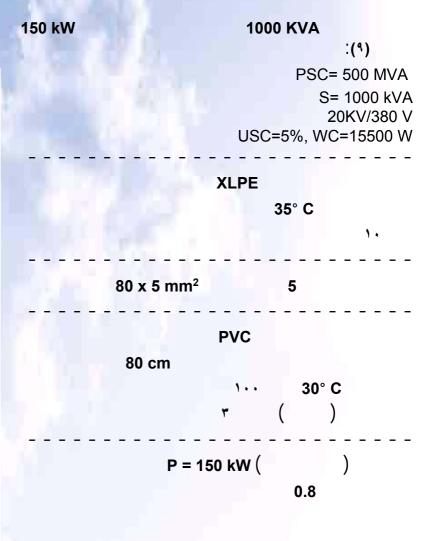
s : conductor cross section [mm²]

 ΔV : Voltage drop [V] also = r.L.I/1000 for single phase,

 $=\sqrt{r}$.**r.L.I/1000** for three phase = 9.5 v for 2.5%

 \mathbf{r} : approx. cable resistance [Ω /km]


ε %: Percentage of a voltage drop. 3% max for lighting load, 6% max for power load


UL: Line voltage; phase to phase voltage [V]

U_{ph}: Phase to neutral voltage [V]

 $\cos \varphi$: power factor = 0.8

I : Load current [A]

A -B -

محمد صبحي المصري ماجستير هندسة علوم كهربائية 00963 94 571281

$$I_B = 1.52 S = 1520 [A] : (Y \circ a)$$

عامل التصحيح	مواصفات التنفيذ	رقم الجدول
1.05	درحة حرارة الهواء C 35°C	10
0.7	عامل تجاور لــ (3) مجموعات من الكبلات متوضعة إلى حانب بعضها البعض Flat	12
0.95	عامل تقادم الكبل (قيمة افتراضية)	-

 $K = 1.05 \times 0.7 \times 0.95 \approx 0.7$:

300 mm²

(0)

740A

 $I_Z = 3 \times 740 \times 0.7 = 1554 \text{ A}$ $I_B \le I_n \le I_Z$ (* `)

	1-57		
-			

حساب هبوط التوتر:

نظراً لكون الكبل XLPE فإن ho عند درجة حرارة ho 90 ساوي ho ومنه:

$$\Delta V = \sqrt{3} \rho \cos \varphi \cdot \frac{LI_B}{s} + \sqrt{3} \chi \sin \varphi \cdot I_B$$
$$= \frac{\sqrt{3}}{42} \times 0.8 \frac{LI_B}{s} + \sqrt{3} \times 0.08 \times 10^{-3} \times 0.6 \times LI_B$$

$$\Delta V = 0.033. \frac{LI_B}{s} + 0.083 \times 10^{-3} \, LI_B = 0.033 \times \frac{10 \times 1520}{3 \times 300} + 0.083 \times 10^{-3} \times 10 \times 1520$$

$$\Delta V = 0.55 + 1.26 = 1.18[v]$$

$$\varepsilon\% = \frac{\Delta V \times 100}{380} \% = 0.47\%$$

ويعتبر هبوط التوتر هذا ضمن القيمة المسموحة

2- حساب مقطع كيل الحمل:

$$I_B = 1.9 p = 1.5 \times 150 = 285$$
 [A] بالاستعانة بالجدول (25a):

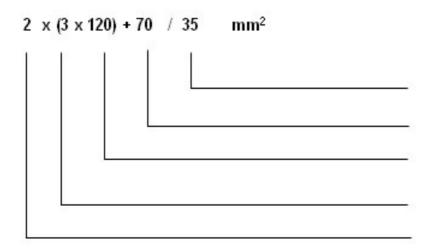
تُحسب عوامل التصحيح وفق الجدول التالي:

عامل التصحيح	مواصفات التنفيذ	رقم الجدول
1.04	درحة حرارة الهواء 30°C	7
0.88	عامل التحاور لكبل في أنبوب منفذ في الأرض عدد الدارات (3) المسافة فيما بينها 30cm	16
0.98	عمق التنفيذ 80 cm	14
0.9	عامل تطور الحمل وتقادم الكبل	-

K = 1.04 x 0.88 x 0.98 x 0.9 = 0.8

من الجدول رقم (2) يمكن إيجاد المقطع المناسب وهو:

2 x 120 [mm²]


وبعد التصحيح يتبين أن التيار يتحمل تياراً قدره:

 $I_{Z} = 2 \times 203 \times 0.8 = 324 \text{ A}$

وتختار قاطعاً ذا تيار اسمى $I_{\rm H} = 300~{\rm A}$ وبذلك تتحقق العلاقة

 $I_R \leq I_n \leq I_Z$

PVC

$$\Delta V = \left(\frac{0.031}{S} + 0.083 \times 10^{-3}\right) LI_{B}$$

$$\Delta V = \left(\frac{0.031}{2 \times 120} + 0.083 \times 10^{-3}\right) \times 100 \times 285 = 6 \ [V]$$

$$\varepsilon\% = \frac{\Delta V \times 100}{UL}\% = 1.59\%$$

$$\chi$$
 F $R_1 = 0.043 \text{ [} m\Omega \text{]}$ $\chi_1 = 0.283 \text{ [} m\Omega \text{]}$

230/400V

IEC

220/380 V

.220/380 V

_ محمد صبحي\\محمد صبح\ ماجستير هندسة علوم كهربانية 00963 94 571281

$$\begin{split} R_2 &= \frac{W_C U^2}{S^2} \times 10^{-3} = \frac{15500 \times 380^2}{1000^2} \times 10^{-3} = 2.23 \ [m\Omega] \\ Z_2 &= U_{SC} \% \times \frac{U^2}{S} = 0.05 \times \frac{380^2}{1000} = 7.22 \ [m\Omega] \\ \chi &= \sqrt{Z_2^2 - R_2^2} = 6.86 \ [m\Omega] \end{split}$$

ح_- الكيل:

$$R_3 = \rho \frac{L}{s} = 22.3 \times \frac{10}{3 \times 300} = 0.24 \ [m\Omega]$$

 $\chi_3 = 0.15 L = 0.15 \times 10 = 1.5 \ [m\Omega]$

د- الباسبار: بفرض أن مقطع الباسبار 80 x 5 mm² وطوله 5:

$$R_4 = \rho \frac{L}{s} = 22.3 \frac{5}{400} = 0.278 \ [m\Omega]$$

 $\chi_4 = 0.15 \times L = 0.15 \times 5 = 0.75 \ [m\Omega]$

ملاحظة: أهملت ممانعة القاطع لصغرها

$$R_{\rm S} = \rho \frac{L}{s} = 22.3 \frac{100}{2 \times 120} = 9.29 \ [m\Omega]$$
 $\chi_{\rm S} = 0.15 L = 0.15 \times 100 = 15 \ [m\Omega]$

4- حساب تيار القصر عند A

$$R_t = R_1 + R_2 + R_3$$

 $R_t = 0.043 + 2.23 + 0.24 = 2.513 \ [m\Omega]$
 $\chi_t = \chi_1 + \chi_2 + \chi_3$
 $\chi_t = 0.283 + 6.86 + 1.5 = 8.643 \ [m\Omega]$
 $Z_t = \sqrt{R_t^2 + \chi_t^2} = 9$
 $I_{SC} = \frac{U}{\sqrt{3}Zt}$

5. حساب تيار القصر عند B

وبالمثل يمكن حساب كل من وR كلّما يلي:

$$R_t = R_1 + R_2 + R_3 + R_4 + R_5 = 12.08 \ [m\Omega]$$

$$\chi_t = \chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 = 24.39 \ [m\Omega]$$

$$Z_t = 27.22 \ [m\Omega]$$

$$I_{SC} = 8.06 \, \left[kA \right]$$

References المراجع

- Electrical Installation Guide according to IEC International Standard, GROUPE SCHNEIDER.
- 2. Low Voltage Cable, Technical Catalogue, Saudi Cable Company.
- 1. Asea Brown Boveri Pocket Book, ABB Switchgear Manual, 10th edition.
- 2. Knockler Moller Wiring Manual, Automation and Power Distribution.
- 3. Selecting Power Cable, some hints on cable dimensioning, ASEA KABEL.
- 1. NFC 15-100 edition 1991.

